SCIENTIFIC COMMUNICATION

Precision micro-spray tower for application of entomopathogens

GABRIEL MOURA MASCARIN1, ELIANE DIAS QUINTELA1, ELI GONÇALVES DA SILVA1, STEVEN PAUL ARTHURS2

1EMBRAPA Arroz e Feijão. Rodovia GO-462, Km 12, C.P. 179, 75375-000, Santo Antônio de Goiás – GO, Brazil.
2Entomology and Nematology Department, University of Florida, Mid-Florida Research and Education Center 2725
Binion Road, Apopka, FL 32703, USA.

Micropulverizador de precisão para aplicação de entomopatógenos

RESUMO - Um micropulverizador portátil de baixo custo e fácil manuseio foi desenvolvido para experimentos envolvendo aplicações aquosas de diferentes entomopatógenos e inseticidas. O dispositivo foi calibrado usando diferentes combinações de pressão e tempo para aplicar uma ampla gama de doses numa superfície plana. Discos de papel-filtro foram pulverizados com corante azul para verificar a uniformidade das depoimentos (cobertura). A relação entre suspensão conídial de fungos entomopatógênicos e a deposição obtida desses propágulos numa superfície plana foi determinada. A combinação de 10 PSI e 3 s conferiu a melhor uniformidade de cobertura resultando num volume de deposição de 2,15 µL cm⁻² (= 215 L ha⁻¹). A deposição de conídios foi positivamente linear às concentrações e esta relação foi similar para os fungos testados. Com base numa regressão linear comum a todos os fungos testados, foi possível estimar uma deposição de 150 conídios mm⁻² (= 1,5×10¹² conídios ha⁻¹) à concentração de 1×10⁷ conídios mL⁻¹. Uma vez calibrado, este equipamento de pulverização pode ser utilizado numa variedade de bioensaios em pequenas arenas para teste de eficácia de entomopatógenos e pesticidas químicos.

PALAVRAS-CHAVE - controle biológico; sistema de pulverização; fungos entomopatogênicos; bioensaios.

ABSTRACT - An inexpensive, portable and easy handling spraying device was developed for experimental application of water suspensions of entomopathogens and insecticides. The micro-sprayer was calibrated using different settings of pressure and time to apply a wide range of doses on a plain surface. Filter paper cards sprayed with dye solutions were used to examine the deposition uniformity (coverage). The relationship between conidial suspensions of fungal entomopathogens and deposition rate of conidia was also investigated. As a result, the combination of 10 PSI and 3 s provided the most uniform coverage at a volume application rate of 2.15 µL cm⁻² (= 215 L ha⁻¹). Conidial deposition rate was positively linear to fungal concentrations and regression lines were not significantly different among the fungal species tested. Hence, a single regression line was determined, which gave an estimate of 150 conidia mm⁻² (= 1.5×10¹² conidia ha⁻¹) based on a concentration of 1×10⁷ conidial mL⁻¹. Once calibrated, this spray device can be used in a variety of bioassays testing efficacy of entomopathogens and chemical pesticides in small confined experimental arena.

KEY WORDS - biological control; spray system; entomopathogenic fungi; bioassays.

Among entomopathogens, mitosporic fungi such as Metarhizium anisopliae sensu latu (s.l.), Beauveria bassiana s.l., Isaria fumosorosea and Lecanicillium spp. have been widely used as eco-friendly biocontrol agents of mites and insects for many decades worldwide (Faria and Wraight 2007). A key factor governing the success of experimental testing of these microbial agents is the accurate application of the inoculum onto the target insect (direct contact) or surfaces of insect habitat (e.g. crop leaves) for residual contact. For that reason, it is critical to determine the known amount of a given active ingredient (e.g. conidia or blastospores) applied per unit area to determine dose-mortality responses of the target insect under specific incubation conditions. For instance, the virulence of fungal entomopathogens is generally
A non-linear model was used to examine the effects of pressure and spraying time on the conidial deposition rates, while linear regression was used to describe the relationship between conidial deposition rate (conidia mm⁻²) on a plain surface and fungal concentration (conidia mL⁻¹) (PROC REG, SAS Institute 2008). Regression lines of deposition rate against concentration of I. fumosorosea, L. muscarium and B. bassiana were compared to determine whether their slopes and intercepts were statistically different at 5% significance using the analysis of covariance (ANCOVA in PROC REG). Image analysis software was used to compare uniformity among different spray patterns according to pressure at a fixed spraying time of 3 s (ImageJ™, V1.47b, http://rsbweb.nih.gov/ij/notes.html). A highly significant relationship between water volume deposition pressure and spraying time was indicated by the non-linear model (Fig. 1) \((F^2 = 713.2; df = 2, 141; P < 0.0001;\) adjusted \(R^2 = 0.91)\). We observed that the optimal coverage uniformity was achieved at 10 PSI and 3 s, which had the lowest frequency distribution curve for reflectance of color intensity (Fig. 1). Narrow reflectance curves (Fig. 1) correlated positively with spray uniformity, since wider bell-shaped curves represent a greater range and variability of droplet deposition. Higher and lower spray volume rates resulted in reduced deposition uniformity (Fig. 1). The selected pressure of our device fell

Table 1. Estimated of conidia deposited on a plain surface after spraying different conidial suspensions at 10 PSI for 3 seconds using the portable micro-spray tower.

<table>
<thead>
<tr>
<th>Concentration (conidia mL⁻¹)</th>
<th>Deposition (conidia mm⁻²) a</th>
<th>Equivalent field deposition (conidia ha⁻¹) b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean±SE</td>
<td>95% Fiducial Limits</td>
</tr>
<tr>
<td>1×10⁷</td>
<td>150±34</td>
<td>34 – 658</td>
</tr>
<tr>
<td>5×10⁷</td>
<td>811±120</td>
<td>193 – 3401</td>
</tr>
<tr>
<td>1×10⁸</td>
<td>1674±261</td>
<td>397 – 7060</td>
</tr>
</tbody>
</table>

aDeposition rates estimated by the single regression lines with common slope and intercept for all fungal entomopathogens tested \((Y = -5.15 + 1.05x,\) where \(y = \log\text{-deposition and } x = \log\text{-concentration}.\) Standard error (SE) is given to the mean.

b Calculated based on 1 hectare of plain area (= 10⁶⁰ mm²).
within the recommended range for Potter spray towers (Potter 1952). The preferred setting (10 PSI for 3 sec) provided a volume application rate of 2.15 µL cm\(^{-2}\) (= 215 L ha\(^{-1}\)), which is close to the standard recommended by the IOBC in many insecticide trials under controlled laboratory conditions (i.e. 200 L ha\(^{-1}\)) (Candolfi et al. 2000). In practice, optimal spray volumes under field conditions may vary widely according to crop type, product formulation, spray application technique, weather conditions and so on.

Slopes and intercepts for deposition rate and concentration regression lines were not significantly different among fungi tested (Interaction fungus×concentration: \(t = 0.03; df = 1, 53; P = 0.98\); Fungus: \(t = -0.21; df = 1, 53; P = 0.84\)), which suggests that the increase in deposition rate of conidia depends on the conidial concentration (Fig. 2). A single regression line for all fungal species was fitted to explain this relationship (Fig 2). There was also a clear relationship between conidial deposition (conidia mm\(^{-2}\)) and concentration (conidia mL\(^{-1}\)) (\(F = 117.32; df = 1, 19; P < 0.0001\), adjusted \(R^2 = 0.85\)). Estimated deposition rates for concentrations at \(1 \times 10^7\), \(5 \times 10^7\) and \(1 \times 10^8\) conidial mL\(^{-1}\) were equivalent to 150, 811 and 1674 conidia mm\(^{-2}\), respectively (Table 1). The portable micro-spray tower can apply a range of concentrations of entomopathogenic fungi which correspond to field doses for commercial aerial and terrestrial applications of entomopathogenic fungi, where application rates fall within \(1 \times 10^{12}\) to \(1 \times 10^{14}\) conidia ha\(^{-1}\) (Jaronski 2010).

In conclusion, we described an inexpensive spraying device for application of fungal entomopathogens as well as other microbial agents to portions of crop foliage or onto target arthropods. This device can be also used with various chemical pesticides. The portability of the system (e.g. requiring no electrical source) allows it to be used in remote locations where other types of spray towers cannot be used.

Figure 1. Calibration of the micro-spray tower (A). Non-linear regression plot for dose (µL of water cm\(^{-2}\)) in function of spraying time (seconds) and pressure (PSI) as explanatory variables (B). Spray patterns at different pressures at 3 s (fixed) expressed in frequency distribution of reflectance from sprayed cards in grayscale (8-bit picture) (C). Spray patterns of water application on filter paper cards in grayscale at 10 PSI/3 s (D) and 30 PSI/3 s (E).
ACKNOWLEDGMENTS

This work was supported in part by Empresa Brasileira de Pesquisa Agropecuária (Embrapa/Brasília/Brazil). We also thank the two anonymous reviewers for their valuable comments to earlier drafts of this manuscript.

REFERENCES

Available online: www.bioassay.org.br/ojs/index.php/bioassay/article/view/114

Figure 2. Regression lines of conidial deposition rates (conidia mm⁻²) against conidial concentrations (conidia mL⁻¹) of I. fumosorosea, L. muscarium, and B. bassiana (A) and a common regression line for all fungal entomopathogens (B). Conidial suspensions were sprayed for 3 s at 10 PSI.